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ABSTRACT

A graphical method is presented for the calculation of charge

collection by diffusion froman ion track in a silicon device.
Graphical data are provided for several device geonetries. The

ion track location/orientation is arbitrary.
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1. Introduction

A graphical nmethod estinmates collected charge, predicted by the
l'inear diffusion equation, produced by an ion track in a sinple
silicon structure consisting of a uniformy doped substrate
bounded by a collection of reflective (insulated) boundary sur-
faces and a collection of sinks for excess carriers. Each sink
simul ates sonme structure such as a reverse-biased depletion
region (DR) boundary (pbrB) or an ohm c contact (electrode) . Bulk
reconbi nation is neglected and all reconbination is assumed to be
on the sink boundaries. This is often an adequate approxi mati on.
When in doubt, the discussion in Section 4 may hel p (Auger recom
bination is briefly nentioned in Section 6). The theory can
easily be generalized to include bulk reconbination |osses (as
poi nted out in Section 7), but the required graphical data are
not provided here.

The linear diffusion equation has been used in the past to
predict currents at DRB's produced by lightly ionizing particles
such as alpha particles [1,2]. Heavier particles are able to
collapse a DR to the extent that funneling [3,4] may becone
important. But even when funneling necessitates use of the non-
linear drift/diffusion equations, the solution still requires
that we know how to estimate currents predicted by the |inear
di ffusion equation (anong other things) [5]. Therefore, this
equation will often find applications in the analysis of ion-
i nduced currents.

Several variations of this problem have been solved in the
past. Whuters [1] and Kirkpatrick [2] have both treated the
problemin which the upper substrate surface contains a suffi-
ciently high density of DR's so that the entire upper surface can
be approximated as a sink. Reference [6] treated the problem in
whi ch the upper surface contains one isolated DR Only tota
col l ected charge was estimated in Reference [6]. No collection
time was estimated, but it was still possible to include bulk re-
conbi nation |osses. However, the Reference [6] nethod has limta-
tions. The lower substrate surface (electrode) mnmust be far bel ow
the ion track and the track cannot be too close to the DR The
present anal ysis renoves these restrictions, but a new limtation
Is that reconbination in the substrate interior mnmust have a
negligible effect on the collected charge of interest. In theo-
ry, there are no restrictions on the substrate or track geone-
tries (except that it be okay to negl ect reconbination in the



substrate interior) . In practice, charge collection estimtes can
be obtained for any substrate geonetry such that equipotential

surfaces (associated wth Laplace's equati on) have been plotted.

Exanples are in the appendix. Total (time integrated fromzero to
infinity) collected charge is rigorously quantified for arbitrary
geometries. An estimate of the tine duration of charge collection
is derived for arbitrary geonetries, but explicitly eval uated
only for one-dinmensional and spherical geonetries. This estimte
i ncludes the influence of boundary surfaces. In one extrene case,

boundary surfaces have little influence and the estinmate reduces
to the traditional estimate (the square of the source-to-
destination distance, divided by the diffusion coefficient). In
the opposite extrene, boundary surfaces have a strong influence,

and charge collection is six tinmes faster than indicated by the
traditional estimate. Physical and statistical explanations are
gi ven.

2. Analysis

Figure 1 shows a sinple geonetry, consisting of one upper sink
(representing a DRB) above a flat |ower sink (representing an
electrode) . Mrre generally, the substrate is bounded by any
collection of sinks which are separated by reflective surfaces.
Let S,denote the surface that collected charge is to be cal cu-
lated for. If we want to know the charge collected by a particu-
lar DRB, then S,is that DRB. If we want to know the sum of the
charges collected by a set of prB's, then S,is the union of that
set of DRB's. Let S be the union of all remaining sink bound-
aries. Let P denote the excess carrier density (assuned to be the
sane for mnority and majority carriers) . The linear diffusion
equation is assuned to apply, so P is governed by the boundary
val ue probl em

Ddiv grad P = sp/st In substrate (la)
P=o on s, and on S, (I'b)
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Figure 1: A sinple geonetry. A single sink S,(possibly a DRB) is
above an infinite plane sink s; (an ohmc contact)




where &§/8t denotes partial derivative with respect to tine and Py
Is the density of electron-hole (e-h) pairs liberated by the ion

The diffusion coefficient Dis assuned to be a constant. Reflec-
tive boundary conditions are assunmed on the reflective bound-
aries. The diffusion current at S,is denoted 1(t) and defined by

I(t) =~qgD | grad P .as (2)
S,

where q is the elenmentary charge. The unit normal vector in the
surface integral is directed outward fromthe substrate, so that

| (t) is positive. The collected charge at S,is denoted Q and
defined by

Q = J I(t) dt. . (3)
0

Q can be calculated without explicitly solving for P, but
necessary to solve for the potenti al
Laplace's equation satisfying

it is
n, which is the solution to

div grad o = O in substrate (4a)

1-4o0 on s and @ = 1 on S,

with reflective boundary conditions assuned on the reflective
boundaries. The potential a, which has nothing to do with carrier
density, is created in the physically unrelated problem in which
the substrate satisfies Chmis law with a uniform conductivity and
a unit potential is applied to S with s; grounded.
does not depend on the initial carrier density, it only has to be
sol ved once for each geonetry. The same 2 is used to calculate Q

for all ion tracks. To see how this is done, use (1), (2), (4),
and the divergence theoremto get

Because



1(t) /(q D = J N1 grad P - ds - J Pgrad a - ds

= ndiv grad P d3x = (|/D) J n ép/ét d3x (5
I

where surface integrals without. subscripts are over the closed
boundary, and the volume integrals are over the substrate. Inte-
grating in t gives

Q=g J n Pl d3x . (6)

The integral in (6) can be evaluated nunerically. Select a nunber
M Then select a set of numbers vi satisfying 0=vg<vi<...<vy=1.
For each i=l, . . . . M define the region R by

«i = the region between the a = vi- equipotential
surface and the a = v; equipotential surface.

The integral in (6) can be witten as

<

Q=a

i

N

M
n py d3x = q Zz Vi ot vi_4) 2]J Pr a3x
JR I 20 [ ( i-1)/ R I

1 i

where the approximation on the far right can be nade as accurate
as we want by using a sufficiently fine partition. For each
i=l, . . . . M define ni by

i number of e-h pairs initially liberated between

the n = «;_1 surface and the a = v; surface. (7)



The equation for Q becones

M
Q~ a 2 [(vi * Vi-)/2] ™. (8)

Wth an initial track density Pl given, all that is needed to
calculate Qis a plot of the a equipotential surfaces so that
each n, can be calculated from (7)

3. Discussion of the Figures and an Example

Col l ected charge can be calculated from (7) and (8) if we have
figures showi ng constant a surfaces. Some figures are provided in
the appendix for the case in which the sink of interest s, is a
flat circular disk. The figures can also be used to represent
ot her "unflat" circul ar shapes, but this is discussed |ater. For
the tine being, S,is imagined to be a flat disk of dianeter D
Several variations of this geonetry, characterized by the
presence or absence of other structures, are discussed bel ow

The sinplest geonetry is that in which S,is very far from all
other structures. It lies in a horizontal reflective plane and 84
is at infinity, below an infinitely thick substrate. Constant 0
surfaces are well known for this geonetry and are represented by
contours in Figure Al (appendix) . The axis of symetry is in the
pl ane of the page and double lines represent reflective bound-
aries. Al contours intersect the reflective boundary at right
angles, but limted plotting resolution does not make this visi-
ble in the figure. The inset "pi=4 mn. div." neans that the disk
di ameter is four mnor divisions, which can represent any physi-
cal distance. Contour |abels are the a values. The 1.0 contour is
§,« Contours outside of the 0.1 contour are nearly circular. If
desired, the plot can be extended to greater distances by draw ng
circles and assigning a values fromthe equation a=(1/mn) (DI/r),
where the radial distance r is nmeasured in the same units that D
I's measured in.

An ion track is not shown in the figure because it is supplied
by the user. This sinple geonetry cannot be used if the track is




too long, even if pI is nuch snmaller than all other relevant
di mrensi ons. Qther rel evant dinensions, denoted collectively as
oo, are diffusion length, substrate thickness, and distance
between S, and other structures in the horizontal plane (e.g.
other prB's) . As track length increases without bound, predicted
col l ected charge also increases wthout bound, becom ng singul ar
as the logarithmof the track length. At |east one of the OD nust
be recognized as finite, and a different figure is needed (dis-
cussed bel ow)

A common situation in which the sinplest geonetry is inappro-
priate occurs when S,is a member of an array of DRB'S, yith the
array dense enough to influence charge collection at s,. The
union of all DRrRB's, except S, is S. The potential a is derived
fromthe electrostatics problemin which one disk, S, is at unit
potential and is surrounded by a dense array of grounded struc-
tures. Let SP be the nearest nei ghbor spacing, neasured from
cl osest point to closest point. The grounded array will screen
nost of the potential produced by S,if the observation Point is
in the horizontal plane and nore than a distance SP froms,. The
grounded array is sinulated by grounding the entire section of
the horizontal plane where r>(1/2)p1+4sp, With the radial coordi-
nate r nmeasured fromthe center of S, The surface S; now becones
this planer section. The sinplified boundary conditions governing
n now become a=1 on the planer section where r<(1/2)DI (Which is
S,), 0=0 on the.planer section where r>(1/2)DI+SP (which is S),
and with reflective boundary conditions on the planer section
between S,and s;. W will pretend that this is the origina
problem that was to be solved, so that we do not have to cal
this an approximation. But even this problemwll only be approx-
i mately sol ved.

An approximate solution is obtained by starting with the poten-
tial function for an isolated disk and then using the nethod of
inversion [7] to construct a second solution to Laplace's equa-
tion. An appropriate superposition of these two solutions, denot-
ed a, will approximately satisfy the required boundary condi -
tions. Note that an is the exact solution for some geonetry,
al though not the intended geonmetry. By tracing equipotential sur-
faces to find out where a=1 and where a=0, we determne the
geonetry that a exactly fits. The 1.0 surface in any figure in
the appendix is the actual S, i.e., the surface where a really
is 1, as opposed to the surface where o was intended to be 1.
Simlarly for s,. Figures A2, A3, and A4 show a contours con-




strutted by this nmethod for several values of the ratio SP/ D
Because the intended boundary conditions are not exactly satis-
fied, s, and S are not perfectly flat, but they are flat enough
(especially S).

Figures A2, A3, and A4 have different parts (e.g. , an “a" and
“b” part for Figure A2) showng different |evels of magnifica-
tion. In each case, the last contour plotted resenbles that for
an electric dipole, so that sinple analytical fits can be used to
extend the plots beyond the ranges shown. For exanple, at |oca
tions outside of the O 2 contour in Figure A2, the extension is
gi ven by nz0.02(zc/r)zcos¢, where r and ¢ are the obvious coordi-
nates and z, is the distance on the axis of symetry froms, to
the 0.02 contour, neasured in the same units that r is neasured
in. Simlar extensions apply to Figures A3 and A4.

Anot her interesting geonetry is the same as that just consid-
ered, except that the “substrate” is an epi layer. There is now a
reflective plane sonme distance L below the plane that S,and S,
lie in. Another approximation is used to obtain a. By starting
wth the a derived for the previous problem and addi ng an appro-
priate translation (or inmage) of the same function, reflective
boundary conditions wll be satisfied on the |ower plane. An
appropriate series of translated functions wll satisfy all
required reflective boundary conditions, but boundary values at
the locations where S,and s, are intended to be are disturbed.
Suitably chosen nultiplicative and additive constants help a
little, and produce the a used for this problem As before, Qis
t he exact solution for sone geonetry, although not the intended
geometry. Figures A5 through aAio show n contours constructed by
this nethod for several values of sp/DI and L/DI. Because the
intended boundary conditions are not exactly satisfied, §; is not
very flat. The nost extreme cases, shown in the figures, of an
"unflat" S, are in Figures A9 and A1O. But even if s, was the
pl aner section that it was supposed to be, the potential would
still be rapidly attenuated as the observation point noves under
Sp. It should not make nuch difference how flat S5 is in these
extrenme cases. In general, the sp/pI and L/D ratios such that s,
deviates nost fromits intended shape are also the ratios such
that the shape of s; is least inportant. Only one level of magni-
fication is shown for Figures A5 through AlO The high density of
contours will cause the figures to be too crowded if all contours
are |abeled. The pattern of contour values is consistent, and
rem nders are included in the figure captions.




The figures offer additional flexibility by renormalizing the
equipotential surfaces. DRBs are not really flat and if we do not
want to approximate a given DRB as being flat, then it will not
fit any of the sinks in the figures. But it mght fit the 0.5
surface (for exanple) in one of the figures. By renormalizing,
the 0.5 surface becones the 1.0 surface (S,), while the 0.4
surface becones the 0.8 surface, etc. Another possible notivation
for renormalizing is to obtain sp/pI ratios other than those
listed in the figures. By renormalizing, a few figures can be
made to represent a |lot of different geonetries.

Cal culation of Qis especially convenient if the ion track has
a uniformlinear density and can be sketched into one of the fig-
ures. This can only be done if the track is in sone plane con-
taining the axis of symetry. The nost versatile approach for any
ot her conditions is to approximate the track as a superposition
of discrete points and treat each point individually. An exanple
may help to clarify the calculation, and is shown in Figure 2.
This is the same as Figure Al except that a physical dinension (a
4 um disc dianeter) was assigned, and a track was sketched into
the figure. For sinplicity, the track lies in the plane of the
page so that it can be sketched into the figure. The sink of
interest is a flat disk, SO renormalizing i S unnecessary. The
track conveniently ends at the 0.1 contour. |If the track was
| onger, we could extend the plot by drawing sone circles. The
track has a uniformlinear density of 6.47x104/pm corresponding
to a linear energy transfer (LET) of 1 Mev-cm?/mg in silicon
(assum ng that each 3.6 ev of deposited energy |iberates one
el ectron-hole pair) . If we want the LET to be 40 instead of 1, we
sinply nultiply the cal cul ated value of Q by 40. By using the
tick marks in the figure to nake a paper ruler and literally
measuring line segnents in the figure, we find that about 2.8 um
of track is between the a=0.4 and the 0=0.5 equipotential sur-
faces. The nunber of initial mnority carriers (or e-h pairs)
bet ween these surfaces is about 1.8x105 W nultiply this nunmber
by the average contour value, which is 0.45, to obtain one of the
terms in (8), i.e., about 45% of this group of carriers wll
reach S, The sane procedure is applied to the other track sec-
tions and the terns are added. The result is



DI = 4 mn.

div.

1 1 L 1

Figure 2:

An exanple used to illustrate how Q can be cal cul at ed.




Q

Qw~ q [ (0.45)(1.8x105) + (0.36) (9.1x10%) + (0.285) (1.0x105)
+ (0.225) (1.0x105) + (0.175) (1.5x105) + (0.125) (3.0x105)]

~ 3.7X10- 1" coul.

4, Assessing the |nportance of Reconbination

It is not always obvious whether or not it is okay to negl ect
reconbi nation, because the inportance of reconbination can depend
on which sink charge collection is to be calculated for. Even if
many carriers reconbine, charge collection at S,wll not be
strongly effected by recombination if few of these lost carriers
woul d have reached S,anyway (i.e., if they woul d have gone to S,
instead) . Reconbination can be neglected if nobst charge coll ec-
tion at S,is fromcarriers initially close to S,, conpared to
the diffusion length. Wether or not this condition is satisfied
can be determned by first calculating Q with reconbination
neglected, as was done in the exanple in the previous section.
Then determ ne what fraction of Q came fromcarriers initially
within sone fraction (let us say 1/2 to be definite) of a diffu-
sion length fromsS, If this fraction of Qis nearly all of Q it
I's okay to neglect reconbination. Otherw se, we have a problem A
solution, pointed out in Section 7, is to construct nore figures,
but such figures are not provided here.

5. Average Arrival Tine

The objective of this section is to get an order of nagnitude
estimate of the tinme duration of charge collection at S, Each
carrier group in (7) contributes additively to the current, so we
can get a picture of the tinme dependence of charge collection
fromthe conmbined groups if we start with a picture of the tine
dependence of collected charge for each individual group. It is
therefore sufficiently general to consider a single group, i.e.,
to assune that all carriers are initially liberated close to sone
point x,, which will be called the source coordinate. A statisti-
cal average arrival tine (tinme of arrival at S) , associated wth

carriers initially near x5, will provide a neasure of how fast or

10



sl ow charge collection from this group of carriers is. Average
arrival tinme will first be defined as it is defined in statis-
tics. Then an equation will be derived that solves for this
arrival tine (in theory) . The equation wll then be explicitly
solved, but only for one-dinensional and spherical geonetries.
The sinple geonetries provide a sinple illustration of sone
I nteresting statistical and physical concepts regarding the
i nfluence of boundary surfaces. Quantitative results derived for
sinple geonetries may provide order of nmagnitude estimates for
some other geonetries if we can estimate “effective distances”
intended to nmake an irregular geonetry conformto a sinple geone-
try. Although the analysis eventually specializes to sinple
geonetries, it begins by treating arbitrary geonetries. The
notivation for starting with a general treatnent is that one of
the equations to follow | ooks nice, even when it cannot be sol ved
analytically. Furthernore, this “nice-looking” equation can be
solved numerically, and provides opportunities for future devel -
opnent s.

In order to define average arrival tine as it is defined in
statistics, we need to find statistical interpretations for sone
of the physical quantities. By assunption, all carriers are
initially near the source coordinate, so Pl is given by

Pi(x) =n &(x - xg) (lo)

where n is the total nunber of e-h pairs liberated and § is the
pDirac delta function. Qis calculated from(6) with the result

Q =d n a(xg) .

The total nunber of liberated mnority carriers is n, while the
total nunmber that eventually reach S,(instead of s;) is Qq. The
fraction of carriers that eventually reach S,is a(xg), so

= probability of a carrier, initially near X,
eventual |y reaching S,.

0(xg)

11



The current 1(t) produced by the n carriers is related to a
probability density or distribution. For sone small tinme interval
st, the nunber of carriers that reach S,between tine t and tine
t+6t is (1/qg)I(t)ét. The fraction of carriers that arrive at S,
during this tine interval is (1/q)I(t)ét/n, SO

(I/9) [I(t)/n) 6t = probability for arrival at S
between times t and t+ét.

Now consi der the subset of carriers that eventually reach s,. The
number of such carriers is na(xg) . The fraction of these carriers
that reach S, between tines t and t+é6t is I(t)ét/[gna(xy)].
Therefore a conditional probability density is

I(t)/[g n a(xg)] = probability density for the arriva
time at S,to be t, given that S, (11)
I's eventual |y reached.

The average arrival time is denoted T and defined to be the
integral of t multiplied by the probability density for the
arrival time to be t. Using (11) , the definition becomes

00
T=[gn n(xs)]'1 Jot I(t) dt . (12)

Having defined T, the next step is to find a way to solve it,
wthout literally solving the tinme dependent diffusion equation
to solve for I(t). This can be done by integrating (la) wth
respect tot, fromOto », while using (10) to conclude that the
time integral of psatisfies Poisson’s equation wth a delta
function driving term Therefore

00
J P(x,t) dt = (n/D) G(x,xg) (13)
0

12




where the Greens function Gis defined by
div grad c(x,x;) = - §(x %) in substrate (14a)
G(x,x;) = O if xis on Sor on 82 (14b)

with reflective boundary conditions assuned on the reflective

boundaries. Miultiplying (5) by t and integrating and then using
an integration by parts on the right gives

00 00
J t I(t) dt = g [ 0 JOP dt d3x
0

and (13) gives

Jwt I(t) dt = g (n/D) J 0 G(x,xg) d3x . (15)

The integral containing the G eens function can be expressed

anot her way by defining the function U by the boundary val ue
probl em

div grad U(x) = - a(x) In substrate (16a)
u(x) "o if xis on Sor on s, (16b)

with reflective boundary conditions assunmed on the reflective
boundaries. A famliar application of the divergence theorem

using (14) and (16) wll show that the integral on the right side
of (15) is U(xg). Substituting this result into (12) gives

T(xg) = (1/D) U(xg)/a(xg) (17)

13



where the argunment xg is now included to enphasize the fact that
T depends on the source coordinate.

Equation (17) is a special formof the nice-Iooking equation
that was promsed (a difficulty discussed bel ow necessitates a
nore general formthat will be derived later) . This equation
shows that T can be calculated by solving Poissonts equation (16)
for U This equation requires nunerical methods for nost geone-
tries, but is easy to solve for one-di nensional and spherica
geonetries.

First consider the one-dinensional problem Let L be the dis-
tance between s; and S,(not to be confused with the L in Figures
A5 through A1Q, and let x be neasured from S,so that xg is the
di stance between the source point and S, The potential ais
gi ven by

l-1(x) "1 - x/1L
and the solution to (16) is
u(x) = (x?/6) [(1. - x/L) - (1 - x/1)3)
so that (17) becones
T(xg) = L xg/(3D) - xg2/(6D) (one-di mensional) .  (18)

Now consider the spherical problem in which s; and S,are
concentric hem spheres bel ow a horizontal reflective plane. Let
i be the radius of S (i=1,2) and assunme that r,>r,. Let r be
the radial coordinate of an arbitrary point so that

a = [ry ry/(ry - I,)] (1/r-1/7;])

14




and the solution to (16) is

Ur) = (1/76) (ry/(xqy - )1 [(r - ry) (r - 2ry)

+t ry(2ry - r;) (1 - ry/r))

and (17) becones

T(rg) = [(ry - r9)2 - (rg - r;)2)/(6D) .

If we let xg=r -r, be the distance from source to s,, and L=r;-r,
be the distance fromS,to s,, the equation becones

T(xg) = L %g/(3D) - x52/ (6D) (spherical) . (19)

Note that we could have started with the slightly nmore conplicat -
ed spherical problemand then derive the one-dinensional result
by letting r, r,, and r,go to infinity in such a way that L and
X are constant.

It is interesting that the average arrival tinme depends not
only on the source to destination distance xg, but also on L. The
fact that T depends on other geonetric paraneters in addition to
xg coul d have been anticipated on a nacroscopic |evel by thinking
of the heat equation, which is the sanme diffusion equation that
we are treating. The source coordinate is an initial hot spot
while the sinks are cold contacts. The collection time for heat
flux through S,is correlated to how fast the device is cooling
off, because the heat flux at any point dies out fast if the
device cools off fast. The rate of device cooling is strongly
influenced by device geonmetry, so the tine duration of heat flow
t hrough S,depends on geonetry. If we decrease L in (19) (the
smal l est allowed value is xg) , we find that T decreases because
t he device cools off faster. Froma m croscopic point of view
(and considering carriers again instead of heat), the location of
s, affects the carrier population that defines the statistics.
Carriers that reach S are elimnated and do not contribute to
the average arrival tinme at S, If S; is close to the source

15




coordinate, the carriers that reach S,take a relatively direct
route (their random wal ks do not zig-zag back and fourth across
s,) and the average arrival tine is relatively short.

Equation (19) has an unfortunate property if we let L-w. The
average arrival tinme increases w thout bound, even if Xg is fixed
when taking this limt. The physical explanation is that a small
fraction of carriers arrive very late. The arrival tinme is large
enough to nore than conpensate for the smallness of this fraction
of carriers, in the sense that this negligible fraction is
strongly influencing the average arrival tine. The statistical
explanation is that the distribution (11) is so skewed (it de-
creases so slowy wth increasing t) that it does not have a
mean. |If L is finite (so that Tis finite) but very large (so
that T is unphysical), then T has a precise statistical neaning
but no physical meaning.

The carriers that arrive very late are so few in nunber that
they have little physical significance, and their only effect is
to make average arrival tine physically neaningless when L is
large. One way out of this problemis to sinply ignore sone of
-the late arrivals. For exanple, we mght ignore the |ast 10% of
the carriers when estinmating average arrival time. One obvious
objection to this approach is that the selected fraction is
arbitrary. (Wy 10% i nstead of 5%) But we are going to have to
be willing to accept sone arbitrariness. Even if the time depend-
ent diffusion equation was conpletely solved and coll ected charge
was plotted as a function of time, some ad hoc criterion is still
needed in order to obtain a single nunber that represents charge
collection tine. Gven that sone arbitrariness i s unavoi dabl e,
the primary problemwith selecting sone fraction is that the
resulting average arrival tinme is too difficult to calculate,
unl ess we conpl etely solve the equations. Another approach that
produces a simlar end result, but leads to a sinpler analysis,
is to include an artificial reconbination termin the diffusion
equation. Reconbination automatically elimnates nost carriers
that would otherwi se arrive very late. Using an appropriately
selected |ifetine 7, we can obtain an end result that is simlar
to neglecting the |ast such-and-such fraction of carriers when
conputing average arrival tinme.

Sel ection of a value for 7 is postponed until later. For the

time being, 7 is an arbitrary constant. Average arrival time T,
associated with 1, is defined by first nodifying (1) so that it
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becones

Ddiv grad p, = (1/71 + §/6t) P, in substrate (20a)
P, =0 on S and on S, (20b)
P, = P; = n §(x - xg) att=0. (20¢)

The current and col |l ected charge are defined by

I,(t) =-gqD Sgrad P,.ds (21)
| 9o
00
o, = Jol,m it . (22
The average arrival tine is defined by
©0
T.= (1/Q;) Ot I, (t)dt . (23)

The denomnator in (23) is the total number of carriers (tinmes Q)
that eventually reach S, so T, is derived froma conditional
probability density simlar to (11). Therefore, T, has a precise
statistical interpretation as a nmean arrival time. But this nmean
refers to a population of carriers that are subject to reconbina-
tion, which elimnates nost of the carriers that would otherw se
arrive very late (and a few that would otherwise arrive early).

The quantities P, I, and Q without the 7 subscript are defined

by the infinite lifetine equations in Section 2. It is easy to
show that the solution to (20) is
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e-t/TP

d
1

so that (21) gives
I,(t) = e t/TI(t) . (24)
Regarding IT(t) as a function of 7, differentiating (24) gives
§I,.(t)/6(1/1) = - U e ¥/TI(L) = - t I.(t)
so that (23) becones

T, = - (1/Q)6Q,/6(1/1) . (25)

W can solve for o, by first defining a, by the boundary val ue
probl em

D div grad a, = am a, In substrate (26a)
N, =0 on s, and o, = 1 on S,. (26b)

T

A famliar application of the divergence theorem using (20) and
(26) gives

- (1/q) I (t) "D Jsgrad P,.ds | a, 6P, /6t d3x
so (22) becones

Q = d J n, pp d3x = ¢ anT s(x - xg) d3X
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or

Q ~a " Bp(Xg) (27)

and ( 25) becomnes

Tr(xg) = - (/8 (%)) 60, (x5)/6(1/1) . (28)

Equation (28) is the general form of the nice-looking equation
that was promsed. Al though incidental to this discussion, it is
interesting that higher statistical noments (e.g., variance) can
be derived in a simlar way, with the result expressed in terns
of higher 1,7 derivatives. Equation (28) can be nade to | ook nore
l'i ke the special case (17) if we define v, by

UT(X) = - D én,(x)/6(1/1) (29)

By differentiating (26) with respect to I/T, we conclude that U,
can al so be calculated fromthe boundary val ue probl em

Ddiv grad u, - (1/7r)u, = - Da, in substrate (30a)

U, =0 on s, and on S, (30b)

which is the generalization of (16). The equation for T

finally
becones

T

T, (Xg) " (1/D) U (%g) /a, (%g) . (31)

To solve for the average arrival tinme, we have the option of

solving u, fromthe boundary val ue problem (30), or by taking the
1/7 derivative in (29).
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An explicit solution will now be derived for the sane spheri cal
probl em that (19) applies to. As before, we let L=r,-r, be the
di stance froms; to S, and xs=rs-r, be the distance between the
source coordinate and S, An additional relevant length is the
di ffusion length Ly defined by

L, = (b n)1/% . (32)
The solution to (26) is given by
f, = (r,/r) [sinh(L/Lp))~ Y sinh(ry/Lp  r/Lp) . (33)

W can use (29) to solve for u,. It is convenient to use (32) and
the chain rule to express the derivative in (29) as

6/6(1/1) = (1/2) (Lp/D) §/6(1/Lp)
and using (33) gives
Ul = (Lp/2) A [L coth(L/Lp) (ry; r) coth(r,/Lp r/Lp))
so that (31) gives

T, (%) “(1/2)(Lp®/D) [(L/LD) coth(L/Lp)
- (L/Lp -  xg/Lp) coth(L/Lp ~ Xg/Lp)l.  (34)
By taking the linit as ry, r, and rs beconme infinite with L and
xg, fixed, we conclude that (34) also applies to the one-
di mensi onal probl em
Note that if we first use (27) to solve for @, as a function of

7, We can then use Laplace transforms with (22) and (24) to solve
for | as a function of t. But the objective here is sinpler. W
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are |looking for a single nunber that estimates the tine duration
of charge collection at S, and is obtained by selecting a defi-
nite r to be used in the average arrival tinme given by (34).

Reconbi nation was artificially included to elimnate the snmall

popul ation of carriers that would otherwise arrive very |ate and
strongly influence the average arrival tinme. A good value for 7
is a value such that nost carriers heading towards s, do not
reconbine, while nost of the small population that woul d other-
Wi se arrive very late do. This suggests that 7 should be selected
so that the diffusion length is several tinmes the distance from
source to destination. The charge collection time T,is defined
to be T, when 7 is selected so that Lj=2xg. The result is

To(Xg) = (2%g2/D) [(L/2xg) coth(L/2xg)

- (L/2xg - 1/2) coth(L/2xg - 1/2)] . (35)

Two limting cases are interesting. W first consider the |arge
L limt. Wen taking this Ilimt, it is helpful to note that the
two hyperbolic functions approach each other (and approach 1)
faster than L increases, so that the L's in the square brackets
subtract out. The result is

Te = (2xg2/D) [1/2]) = xg%/D  as L~ 00 . (36)

The right side of (36) is a traditional estimate of the charge
collection tinme. In the opposite extrene, we let L approach its
smal | est al |l owed val ue, which is x . This limt also applies if
we regard L as fixed and nove the source coordinate towards S;-.
The result is

To = (2%g2/D) [(1/2) coth(1/2) - 1] = x2/6D as L -+ xg . (37)

Conparing (37) to the same |imt applied to (19), we find that
the artificial reconbination has little effect on the average
arrival tine in this limt, indicating that the few late arrivals
do not strongly influence average arrival tinme in this [imt.
Note that charge collection is six times faster, in this limit,
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than indicated by the nore traditional estimte xc2/D. This is
due to the influence of boundary surfaces. In the anal ogous heat
probl em di scussed earlier, we can say that the rapid device
cooling induced by the cold contacts shortens the tinme duration
of heat flowto S,.

6. Nonlinear Effects

D ffusion may adequately describe charge collection in sone
devices (e.g., DRAMs [8]) even when the ion LET is so |large that
the carrier density exceeds the doping density over an extended
spatial region and time interval. The ambipolar diffusion equa-
tionis nost likely to be used in this case, i.e., the Din (la)
is the ambipolar diffusion coefficient. Sonme investigators wll
insist that neglecting carrier-carrier scattering (ccs)yis a big
m stake. The purpose of this discussion is to point out that
including ccs is a bigger mstake, if it is not treated consist’
ently. CCS affects carrier nmobility, but a consistent treatnent
recogni zes that CCS also nodifies the Einstein relation used to
calculate diffusion coefficients from nobilities. A theoretical
anal ysis [9] has shown that the end result is that the ambipolar
di ffusion coefficient is not affected by CCS. This result can be
intuitively guessed if we visualize ambipolar diffusion as a
process in which electrons and holes nove together in an average
sense (in reality, electrons and holes do not always nove togeth-
er during ambipolar diffusion [5,10], but they do in sone speci al
cases and that is good enough for this discussion) . W would not
expect collisions between carriers to affect their average no-
tions when both types of carriers have the same average notion
Failure to nodify the Einstein relation can result in unphysical
predictions, such as tracks being “frozen” for an extended tineg,
as if the carriers were immobile until reconbination reduces the
popul ation. This is mentioned because sone conputer sinulation
results have made such predictions. It is better to conpletely
ignore CCS than to include it in one calculation but not in
another. If CCS is treated consistently, we should get the sane
di ffusion equation that we get by consistently neglecting CCS,
which is the sinplest approach.

Al'l discussion in the previous sections regarding reconbination
in the substrate interior tacitly referred to Shockley-Read-Hall
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reconbi nation (SRHR) . Another type is Auger reconbination (AR
Al t hough extrenely nonlinear, AR may be easier to treat than SRHR
if certain required data are available. A theoretical analysis
[ 11] concl udes that AR acconpanyi ng an expandi ng (diffusing)
track has such a short tine duration that the end result is the
sane as if there was no AR but the initial track density was
smaller, i.e., as if the ion had a reduced LET. For a given ion
speci es and energy conbination (IsEc) , the “reduced LET” should
be a material property, dependent on AR |ifetine but not on
geonetry. This nmeans that reduced LET is well defined, i.e., we
can associate a reduced LET with a given ISEC in a given materia
just like we can associate a regular LET with a given ISEC in a
given material. Tabulation of reduced LET, derived from computer
simul ations and/or nmeasurenents, may not be too formdable if AR
is inmportant for a sufficiently narrow range of 1IsEc's. Further
di scussion is beyond the scope of this paper. It is enough to
point out that a sinple diffusion analysis, such as given here,
can probably include AR if the required data (reduced LET) are
avai |l abl e.

Anot her nonl inear effect is “funneling”, which occurs when
carriers flood a DR and cause it to collapse. Sonme or nearly all
of the applied voltage plus built-in potential normally across
the DR is now across the substrate. The substrate electric field
can enhance charge collection. A steady-state version of the
probl emwas solved fairly rigorously [5], and provided insights
into the transient problemthat were confirmed by conputer sinu-
lations. But the analysis was quite conplex, |argely because the
potential drop (actual potential, not n) is divided between the
DR, the portion of substrate containing the track, and the por-
tion of substrate below the track. As transient charge collection
proceeds, the DR is recovering and the track length is shrinking
(an inportant effect if the track is | ong enough to reach the
| oner el ectrode) and the potential distribution beconmes very com
plex. A convincing transient analysis Will probably not be nuch
sinpler than the steady-state analysis, so it is not surprising
that the sinple transient nodels that presently exist are too
simple. The transient problem has not yet been adequately sol ved
and it is not yet clear what role diffusion calculations wll
play in the analysis. D ffusion can induce funneling under
steady-state conditions [5] and under transient conditions
[6,12], so it will clearly play some role in the transient prob-
lem In the steady-state problem diffusion calculations are not
enough but are still needed. Although not enough, having diffu-
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sion current estimates for the transient problem nust surely be
better than not having them

7. Recommendati ons for Future Work

The list of figures in the appendix is limted, and the use of
sinple analytic expressions limts the calculation of o to sone
rather special geonetries. A nore extensive set of figures ob-
tained from nmodern nunerical nethods would be a useful contribu-
tion. Computer calculations can treat geonetries that are better
representations of sonme of the nore common geonetries found in
actual devices. Three-dinensional geonetries can be pictorially
represented by plots in several planes, having the sanme orienta-
tions but translated relative to each other (the track can be
approximated as a set of discrete points if it cannot be sketched
into a figure) . Reconbination can also be included if the life-
time r is approximated as a constant and (4) is replaced with
(26) . Although (26) is nore difficult to solve analytically in
three dinmensions than (4), it is not a difficult equation if
nunerical nethods are used. The prinmary disadvantage of (26) is
that it introduces another paraneter. In addition to several
geonetric dinensions, we now have another dinension; diffusion
length. This neans that a set of figures that could be called
extensive woul d contain many pages. But they should be easy to
make if the required conputer codes are avail able.
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Fi gure A9: Disk with dianeter DI surrounded by a sink wth
| ateral separation sp=DI, and at a distance 1L=DI above a reflec-
tive plane. The sequence of contour values between 1 and Ois
0.8, 0.65, 0.5, 0.4, 0.32, 0.25, 0.2, 0.15, 0.1, 0.08, 0.065, and

0.05.
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Figure A1IO Disk with dianeter DI surrounded by a sink wth
| ateral separation sp=2DI, and at a distance 1=DI above a reflec-
tive plane. The sequence of contour values between 1 and Ois
0.8, 0.65, 0.5, 0.4, 0.32, 0.25, o0.2,0.15, 0.1, 0.08, 0.065,
0.05, 0.04, and 0.032.



